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1. BACKGROUND 
 

§1.1. Finite Groups 
Before we begin let us 

review some of the 

background that is assumed 

knowledge. We’ll be 

studying the theory of 

representations of finite 

groups and so we need a 

fairly solid background in 

the theory of finite groups. 

Groups were invented 

by Évariste Galois, a young 

French mathematician 

(1811-1832) as a tool for studying the solubility of 

polynomials by radicals. He was also a political radical 

and was killed in a duel at the age of 19.  

A group G is a set together with a binary operation 

such that: 

(1)  ab  G for all a, b  G; 

(2) (ab)c = a(bc) for all a, b, c  G; 

(3) 1a = a = a1 for some 1  G; 

(4) for all a  G there exists a−1  G such 

that aa−1 = 1 = a−1a. 

 

G is abelian if we also have 

                        (5) ab = ba for all a, b  G. 
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 We shall mostly use ‘multiplicative notation’, as 

above. If n is a positive integer we define an  to be the 

product of n copies of a. We then define a−n = (a−1)n and 

a0 = 1. The usual index laws hold, with the exception of 

(ab)n = anbn which requires commutativity. 

The order of a finite group G is |G|, the number of 

elements in G.  Now the order of a finite group is 

probably its most important property. Merely knowing 

how many elements there are can give us a lot of useful 

information about the group, especially using the prime 

factorisation of the group order. Elementary number 

theory is an important tool as many proofs hinge on 

whether a number associated with a group is prime or 

whether one such number divides another. 

 A subset H is a subgroup of G (we write H  G) if 

H is a group under the same operation. If H  G and x  

G then the right coset containing x is xH = {xh | h  H} 

and the left coset containing x is Hx = {hx | h  H}. Of 

course in abelian groups these are the same thing, and 

even for a non-abelian group they often are the same. 

 Any two different right cosets are disjoint, and 

similarly for left cosets. The right cosets of H are the 

equivalence classes under the relation x  y if x = yh for 

some h  H. They all have the same size, namely the order 

of H. Yje subgroup H is itself both a left and a right coset. 

So, we have Lagrange’s Theorem, that if H  G 

then |H| divides |G|. The other factor, the number of right 

or left cosets, is called the index of H and is written |G:H|. 
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A subgroup H of G is a normal subgroup (H    G) 

if every left coset is also a right coset, or equivalently, 

g−1Hg = H for all g  G. Clearly for abelian groups every 

subgroup is normal, but there are some non-abelian 

groups with this property. 

A group is simple if the only normal subgroups are 

1 and G. A group of prime order is simple because, by 

Lagrange’s Theorem, 1 and G are the only possible 

subgroups. Non-abelian simple groups have been 

extensively studied and have been classified completely. 

 If K is a normal subgroup of G then the left cosets 

and the right cosets coincide and we can make these 

cosets into a group, G/K, by defining (xK)(yK) = xyK. In 

other words, to multiply cosets we simply multiply 

representatives. This operation is well-defined, meaning 

that the product of two cosets is independent of the 

representatives. Note that |G/K| = |G:K| = |G|/|K|, being the 

number of cosets of K in G. 

The direct product of the finite groups G1, … , Gk 

is G1  …  Gk 

= {(g1, … , gk) | each gi  Gi} under component-

wise multiplication. 

 

§1.2. Homomorphisms and the 

Isomorphism Theorems 
In any theory where we have sets with a certain 

structure, we consider functions from one set to another 

that preserves the structure. Depending on the type of 
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structure these are called linear transformations or 

continuous functions, or homomorphisms. For groups, 

rings and fields they’re called homomorphisms and they 

preserve the operations. 

At this point we’ll mention a notational convention 

that we’ll normally use in these notes when describing 

functions. Instead of writing f (x) we’ll write xf. Apart 

from using less ink, it makes for a very natural looking 

definition of the product of two functions. If f:A → B and 

g:B → C are functions the product fg is defined as a map 

from A to C by defining 

a(fg) = (af)g for all a  A. 

This looks like an associative law, but of course a 

is an element of A and f, g are not. You’ll no doubt 

recognise this as essentially composition of functions, but 

backwards. With  

f  g we apply g first and then f while with multiplication 

fg means apply f first and then g. 

We reserve the right to slip back to the f (x) notation 

when it suits us. Certainly if this was a calculus text we 

wouldn’t be writing “x sin” instead of “sin x”! 

 

A homomorphism :G → H is a map where (ab) 

= (a)(b) for all a, b  G. It is just as if we were re-

coding the elements of G. A rather trivial example of a 

homomorphism from G to H (in fact it’s called the trivial 

homomorphism) is the one where every element maps to 

the identity of H. Homomorphisms in general give scaled 

down versions of the original group. If we want the image 
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to be considered as the same group we must insist that the 

homomorphism be a 1-1 correspondence. 

A homomorphism is an isomorphism if it’s 1-1 

and onto. If there exists an isomorphism from G to H we 

say that G, H are isomorphic and write G  H. As I’ve 

said, isomorphic groups are considered to be essentially 

the same group if we are only interested in their structure. 

Other special types of homomorphism are defined 

as follows. 

The homomorphism f : G → H is an endomorphism if H 

= G, an isomorphism if it is 1-1 and onto and an 

automorphism if both. 

 

The kernel of a homomorphism :G → H is ker  

= {g  G | g = 1} and 

the image is im  = {g | g  G}. There are three 

fundamental Isomorphism Theorems. The first is proved 

directly and the Second and Third are proved from the 

First by setting up suitable homomorphisms. 

First Isomorphism Theorem: If : G → H is a 

homomorphism then: ker      G ; im   H and G/ker  

 im . 

 

Second Isomorphism Theorem: If H  G and K    G and 

HK = {hk | h  H, k  K} then 

HK  G; H  K    H and HK/K  H/(H  K). 

 

Third Isomorphism Theorem: If H  K and H, K    G 

then H/K    G/K and 
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(G/K)/(H/K)  G/H. 

 

 If G is a group, a G-set is a set, X, together with a 

function : X  G → X such that: 

(1) x  1 = x for all x  X and 

(2) (x  g)  h = x  (gh) for all x  X and g, 

h  G. 

If X is a G-set we say that G acts on the set X. We have 

here a primitive analogue of a vector space.  If Y  X  

the stabiliser of Y is (Y) = {g  G | x  g = x for all x  

Y}. In general, stabilisers are not normal, but the stabiliser 

of the whole set is. If X is a G-set then: (X)     G and 

G/(X) is isomorphic to a group of permutations on X. 

 

 A G-set X is defined to be faithful if (X) is trivial 

and the group G is isomorphic to a group of permutations. 

Every group G is a faithful G-set if we define x  g = xg 

for all x, g and so G is isomorphic to a group of 

permutations. (This is known as Cayley’s Theorem). 

 

 Suppose X is a G-set and let x  X. The set of all 

those elements of X that can be reached from x by 

multiplying by some element of G is called the orbit 

containing x and is denoted by xG . The relation ~ defined 

on X by x  y if x  g = y for some g  G, is an equivalence 

relation and the equivalence classes are simply the orbits. 

If X is a G-set the size of the orbit of x is the index of the 

stabiliser of x in G. 
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§1.3. Conjugates and Commutators 
 Two elements g, h commute if gh = hg. In an 

abelian group this happens all the time and so the concepts 

in this section will only be of interest in a non-abelian 

group. 

 The centraliser of an element g in G is CG(g) = {x 

 G | xg = gx}  G. It consists of all the elements of G 

that commute with g and is a subgroup of G. 

 Among the elements of CG(g) are the powers of g. 

We denote the set of powers of g by g and call it the 

cyclic subgroup generated by g. So g  CG(g) for all g 

 G. 

 The order of g is also the smallest positive n such 

that gn = 1 and this is called the order of g, denoted by |g|. 

We define the centre of a group G to be Z(G) = {z 

 G | zg = gz for all g  G}, a normal subgroup of G. We 

can produce the ascending central series 

1 = Z0(G)  Z1(G)  Z2(G)  … 

where Zn+1(G) is defined by Zn+1(G)/Zn(G) = Z(G/Zn(G). 

If this series eventually reaches G we say that G is 

nilpotent. 

 If g, x are elements of G we define xg to be g−1xg, 

and say that x, y are conjugates if there exists g  G such 

that y = g−1xg. Conjugacy is an equivalence relation, and 

the equivalence classes are called conjugacy classes. We 

denote the conjugacy class containing g by xG. 

Conjugation makes G into a G-set in a different way to 

Cayley’s theorem. The conjugacy classes are the orbits 



 

 16 

and the stabilisers are the centralisers. The number of 

conjugates of g in G is the index of the centraliser, CG(g) 

in G. 

We can conjugate subgroups by defining Hg = {hg 

| h  H} and HG = {Hg | g  G}. This makes the set of 

subgroups of G into a G-set. The normalizer of H in G is 

the stabiliser, NG(H) = {g  G | Hg = H}. Normalisers are 

subgroups of G, and every subgroup of G is a normal 

subgroup of its normaliser. The number of conjugates of 

H in G is the index of the normaliser of H in G. 

 

A commutator is an element [g, h] = g−1h−1gh. 

Whenever two elements commute, their commutator is 

the identity. The identity is a commutator, and the inverse 

of a commutator is a commutator: [g, h]−1 = [h, g]. Even 

a conjugate of a commutator is a commutator: x−1[g, h]x 

= x−1g−1h−1ghx. But the product of two commutators 

needn’t be a commutator. 

The derived subgroup G  (often called the 

commutator subgroup) of G is the set of all products of 

commutators. It is the smallest normal subgroup for 

which the quotient is abelian. We define G to be (G), 

G = (G) and so on, but rather than accumulate dashes 

we begin to use superscripts. So we write G as G(3) and 

so on. Thus we define: G(0) = G and G(n+1) = G(n) for all n. 

These are all normal subgroups of G and form a 

descending sequence, called the derived series:  G = G(0) 

 G  G  …  If this reaches 1, we say the group is 

soluble. 
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§1.4. Sylow Subgroups 
 Lagrange’s Theorem states that the order of a 

subgroup divides the order of the group. The converse 

isn’t always true. But if that number is a prime power, 

then there is indeed a subgroup of that order. The proofs 

use some clever counting techniques involving G-sets. 

 

Sylow’s First Theorem: A finite group G has a subgroup 

of order pn whenever pn divides |G|.  

 

 If |G| = pnm where p is prime and m is coprime to 

p, a subgroup of order pn is called a Sylow p-subgroup of 

G. 

 

Sylow’s Second Theorem: All Sylow p-subgroups of G 

are conjugate in G. 

 

Sylow’s Third Theorem: If |G| = pnm, where p is prime, 

coprime to m, the number of Sylow p-subgroups is 

congruent to 1 modulo p and divides m. 

 

§1.5. Examples of Groups 
Since this is merely a revision of basic group theory 

it’s assumed that the reader has seen many examples of 

groups. But we list here some important families of 

groups. Most of them are described in terms of generators 

and relations in the form: 

A, B, … | R1, R2 …, Rn 
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where A, B, … are the generators and R1, … , Rn are the 

relations. 

 

Cyclic groups: Cn = A | An = 1 is called the cyclic group 

of order n. 

 

Dihedral groups: D2n = A, B | An = 1, B2 = 1, BA = 

A−1B. 

 

Metacyclic groups: Mm,n,r = A, B | Am = 1, Bn = 1, 

B−1AB = Ar. 

 

Symmetric groups: Sn = {permutations on n symbols}, 

An = {even permutations}     Sn. 

 

General Linear groups: GL(n, p) = {n  n invertible 

matrices over the field ℤp}. 

 

§ 1.6. Rings and Fields 
 We also need to know something about rings, 

especially non-commutative ones. A ring R is a set with 

two operations + and . With regard to addition R is an 

abelian group. With regard to multiplication we only 

assume that it is closed under multiplication and the 

associative law holds for multiplication. Tying both 

operations together we have the distributive law. 

 Some books also assume that rings have a 

multiplicative identity, 1. We don’t. The reason is that we 

want to be able to consider ideals of rings as subrings. The 
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definition of subring is obvious. A left ideal of R is a 

subring L with the additional property that rx  L 

whenever x  L and r  R. This is a stronger than is 

required for a subring. If x  R, Rx is a left ideal. If R has 

no 1 then Rx might not contain r. If we include it we get 

Rx + ℤr, the set of all elements of the form rx + nr, where 

r  R and n  ℤ. This is the smallest left ideal that 

contains x and is called the left ideal generated by x. We 

define a right ideal similarly and a 2-sided ideal is one 

that’s both a left and a right ideal. We use the same 

symbol      for 2-sided ideals as we do for normal 

subgroups. 

 Clearly the distinction between left and right is 

only of interest in non-commutative rings. (For some 

reason we never use the word ‘abelian’ for commutative 

rings. Perhaps this is because rings came long after Abel.) 

 The importance of 2-sided ideal is that they play 

the corresponding role for rings as normal subgroups do 

for groups. They are the subrings that one can factor out 

by to get quotient rings. The elements of R/I are cosets x 

+ I, which are added and multiplied in terms of the 

representatives. It is easily checked that these operations 

are independent of the representatives used. 

 As with all sets with structure we have functions 

from one to another that preserve the structure. In the case 

of rings a homomorphism takes sums to sums and 

products to products. Moreover the three isomorphism 

theorems hold for rings. We define the kernel of a ring 

homomorphism to be the set of elements that map to zero. 
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Related words such as ‘isomorphism’, and 

‘automorphism’ are defined in an analogous way for 

rings. 

 

 A field is a ring with the additional properties that 

multiplication is commutative, there is a multiplicative 

identity 1 (different to 0) and every non-zero element has 

a multiplicative inverse. 

 A field has characteristic zero if all non-zero 

elements have infinite order under addition. A field, F, is 

algebraically closed if every non-constant polynomial 

over F has a zero in F. The field, ℂ, of complex numbers 

has both properties and, as we’re doing classical 

representation theory, we’ll be using this field throughout.  

 

§ 1.7. Vector Spaces 
 A vector space, over a field F, is an abelian group 

under addition, together with a multiplication by elements 

of F, written v. We don’t adopt the convention of writing 

vectors in bold type because sometimes scalars are also 

vectors, as in the case where we consider the complex 

numbers to be a vector space of dimension 2 over the field 

of real numbers. 

We insist on the following axioms related to scalar 

multiplication. 

(1) v  V for all   F and v  V; 

(2) 1v = v for all v  V; 

(3) ( + )v = v + v for all ,   F and 

all v  V; 
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(4) (u + v) = u + v for all   F and all u, 

v  V and 

(5) ()v = (v) for all ,   F and all v  

V. 

 

 The theory of vector spaces runs a little way in 

parallel to the theory of groups, though the terminology is 

sometimes different. For a start we don’t usually call it 

vector space theory, but rather linear algebra.  

 We define subspaces in the usual way, with the 

usual notation of . The sum of two vector spaces is U + 

V, the set of all sums u + v of vectors in U and V. The 

sum is a direct sum, written U  V if, in addition, U  

V = {0}. 

 

There’s nothing special that corresponds to normal 

subgroups and 2-sided ideals in linear algebra. We can 

form quotient spaces U/V can be formed, in the usual 

way, using any subspace. (Usually these don’t appear in 

a first course on linear algebra, but if you know about 

quotient groups you’ll be OK with them.) 

 

A linear transformation is defined to be a 

function  from a vector space to a vector space, over the 

same field, such that: 

(x + y) = (x) + (y). 

 This corresponds to homomorphisms for groups 

and rings. Linear transformations from a vector space to 

itself are called endomorphisms. Those that are 1-1 and 
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onto are called isomorphisms and those that are 

isomorphisms from a vector space to itself are called 

automorphisms. Two vector spaces over the same field 

are said to be isomorphic if there is an isomorphism 

between them. 

 

A linear combination of a set of elements X in a 

vector space V over F is a finite sum: 

1v1 + … + nvn for some n, 

where each i  F and each vi  X. 

 

Let X be a subset of the vector space V. 

• X is spans V if every vector in the space is a linear 

combination of them. 

• X is linearly independent if the only linear 

combination of them that is zero is the trivial one, where 

all the coefficients are zero. 

• X is a basis if it is both linearly independent and spans 

V. 

The fundamental theorem of vector spaces is the 

fact that every finitely generated vector space has a basis 

and any two bases have the same number of elements, 

called the dimension of the vector space, dimFV, or just 

dim V if the field is understood. Any set of vectors with 

fewer elements does not span V and any set with more 

elements is automatically linearly dependent. It’s also 

easy to see that dim V = dim U + dim (V/U) for any 

subspace U. 
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The kernel of a linear transformation  is the set of 

vectors that map to zero, and this is a subspace, denoted 

by ker . The three isomorphism theorems that you have 

met in group theory and ring theory have their 

counterparts in vector space theory (usually called linear 

algebra), though they would not have had those names 

when you first met them. The dimension of ker  is called 

the nullity of  and the dimension of im  is called the 

rank of . 

 

The three isomorphism theorems that we encounter 

in group theory and ring theory have their counterparts in 

linear algebra, though they are expressed in terms of 

dimensions rather than isomorphisms. 

 

First Isomorphism Theorem: If : U → V is a linear 

transformation then ker   U and U/ker   im  (the 

image of ). 

Corollary: rank  + nullity  = dim U.  

 

Second Isomorphism Theorem: If U, V are subspaces 

of a larger vector space then 

(U + V)/V  U/(U  V). 

Corollary: dim (U + V) = dim U + dim V − dim (U  V). 

 

Third Isomorphism Theorem: If U  V  W then 

(W/U)/(V/U)  W/V. 

The Corollary of this theorem, in terms of dimensions, 

would be 
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dim W − dim U − (dim V − dim U) = dim W − dim V 

which is not very exciting, so that’s why you’ve never 

heard of it! 

 

 The main example of a finite-dimensional vector 

space is {1, …, n | each i  F} under the usual addition 

and multiplication by an element of F. This is written as 

F  F  …  F (n copies). 

and every vector space of dimension n over F is 

isomorphic to it. This is a representation theorem for 

vector spaces which, though useful, is not nearly as deep 

a theory as the theory of representations of finite groups. 

 

 An algebra, over a field F, is a ring with 1 that’s 

also a vector space over F. If a ring with 1 contains a field 

it is automatically an algebra over that field. 

 

§1.8. Matrices 
A matrix, over a field F, is a rectangular array of elements 

from F. If there are m rows and n columns we call it an m 

 n matrix. It is a square matrix if m = n. The entry in 

the i’th row and j’th column is called the i-j component, 

and if it is aij we write A = (aij). 

 

The transpose of the m  n matrix A = (aij) is the n  m 

matrix AT = (aji). Clearly (AT)T = A, and if A = AT, A is a 

symmetric matrix. A diagonal matrix is one where aij = 

0 whenever i  j and a scalar matrix is a square diagonal 

matrix where all the diagonal entries are the same. A 
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column vector, v, is an n  1 matrix and a row vector vT 

is a 1  n matrix. 

 

We add and, subtract and multiply two matrices with the 

same dimensions component-wise. That is, (aij)  (bij) = 

(aij  bij). Multiplication by a scalar (an element of F) is: 

(aij) = (aij). 

The product of matrices is only defined in certain cases. 

If A = (aij) is an m  n matrix and B = (bij) is n  r then 

AB = 









k

aikbkj  . Both addition and multiplication are 

associative and multiplication is distributive over 

addition. 

The set of all n  n matrices over F is a ring, Mn(F), with 

additive identity the zero matrix, 0, where all 

components are zero and multiplicative identity I, the 

scalar matrix where all diagonal components are 1. 

 

If U, V are finite-dimensional vector spaces over F, with 

bases {u1, …, um} and {v1, …, vn} respectively and if 

:U→V is a linear transformation where (ui) = 
j

aijvj 

the matrix A = (aij) is called the matrix of the linear 

transformation . If :V→W is a linear transformation 

with matrix B then the matrix of  is AB. So matrix 

multiplication represents the multiplication of linear 

transformations. 

 



 

 26 

The determinant of an n  n matrix A is defined 

inductively by (a) = a and |A| = 
k

a1jA1j where Aij is the 

(n−1)(n−1) matrix obtained from A by deleting row i 

and column j. Simple properties are |AT| = |A| and |AB| = 

|A|.|B|. The adjoint of A is adj(A) = (|Aij|)
T and A.adj(A) 

= |A|.I = adj(A).A. The trace of A is tr(A) = the sum of 

the diagonal elements. 

 

The square matrix is invertible if A−1 exists and A is 

invertible if and only if |A|  0. If A, B are invertible, 

(AB)−1 = B−1A−1. If |A| = 0 there exists a non-zero vector 

v such that Av = 0. If Av = v for v  0 the vector v is 

called an eigenvector of A and  is the corresponding 

eigenvalue. The trace of a square matrix is the sum of its 

eigenvalues and the determinant is the product of the 

eigenvalues. 

 

The polynomial A() = |I − A| is called the 

characteristic polynomial of A. Over ℂ it splits into 

linear factors and the zeros of A() are the eigenvalues 

of A. 

A() = n − tr(A) + … + (−1)n|A|. 

If f() is any polynomial over F, f(A) is the matrix 

obtained by substituting A for  and replacing the 

constant term a0 by a0I. If f(A) = 0 then f() = 0 for all 

eigenvalues, . So, if An = I, the eigenvalues of A will be 
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n-th roots of unity. The Cayley-Hamilton theorem states 

that A(A) = 0.  

 

Two matrices A, B are similar if B = S−1AS for some 

invertible matrix S. Similarity is an equivalence relation 

and similar matrices have the same characteristic 

polynomial, eigenvalues, trace and determinant. 

 

A matrix A is diagonalisable if it is similar to a diagonal 

matrix. Matrices with no repeated eigenvalues, symmetric 

matrices and matrices of finite order are among those that 

are diagonalisable. 

 

§1.9. Inner Product Spaces 
 Finally you’ll need to know a little of the theory of 

complex inner product spaces. A complex inner product 

space is a vector space over ℂ with an inner product u|v 

satisfying the following axioms. 

(1) u + v | w = u|w + v|w; 

(2) u | v = u | v; 

(3) v | u is the complex conjugate of u | v. 

(4) v | v  0 for all v and v | v = 0 if and only if v = 0; 

By (3) v | v is real for all v and by (4) it is non-

negative, so it has a real square root. This is called the 

length of a vector v. A unit vector is one whose length is 

1. Two vectors u, v are orthogonal if u | v = 0 and an 

orthonormal basis is a basis of mutually orthogonal unit 

vectors. A fundamental theorem of complex inner product 
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spaces is that every finite dimensional complex inner 

product space has an orthonormal basis. 

 


